Abstract

AbstractBiofouling is a major global environmental and economic challenge wherein organisms settle on solid surfaces submerged in natural waters. This leads to the spread of invasive marine species around the globe, accelerates surface deterioration through microbially‐induced corrosion, and inflates maritime vessel fuel consumption which leads to greater greenhouse gas emissions. In this study, pulsed plasma poly(styrene) nanocoatings impregnated with eco‐friendly liquids are produced that yield slippery surfaces through aromatic–aliphatic intermolecular interactions (water droplet contact angle hysteresis and sliding angle values ≈1–2°). The antibiofouling performance of these slippery surfaces is demonstrated using laboratory‐based marine bioassays and real‐world field trials in freshwater (pond water) and seawater (ocean) environments. Low‐cost and substrate‐independent pulsed plasmachemical deposition combined with eco‐friendly liquid impregnation provides a sustainable approach to tackling environmental biofouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.