Abstract

Since toxic gas leakage may cause ecological environmental problems and even life-threatening damage, effective monitoring of toxic gas is of great importance and subject to increasing demand. However, complicated environmental factors, as well as various coexisting interferences can easily affect the sensitivity and selectivity of gas sensors, hindering their performance. Recent reports have successfully demonstrated the development of hierarchical nanostructures with desirable self-cleaning properties, yet gas sensors that can resist contamination have rarely been realized. Here, we developed a reentrant thorny ZnO/graphene hybrid nanowall structure that simultaneously repels liquid contamination and possesses NH3 gas sensing properties. The unique reentrant and hierarchical structure, featuring an interconnected vertical graphene nanowall framework with numerous ZnO nanospikes branched on the top nanowall, is highly repellent to liquids, even biofluids with low surface tension. The hierarchical structure consisting of gas sensing graphene and ZnO can be successfully applied as an NH3 gas sensor at room temperature, exhibiting not only excellent sensitivity, selectivity, and repeatability, but also outstanding stability even after bacterial contamination. This study provides a versatile method for fabricating reentrant and hierarchical structures with excellent liquid repellency, and offers a promising method for designing reliable gas sensors with anti-biofouling properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.