Abstract

Activation of photocatalytic titania by ultraviolet-A (UVA) radiation has been proposed as a good approach for combating bacteria. Titania powder, in solution or immobilized on a surface, has excellent UVA-assisted killing properties on several microorganisms. However, these properties could not be demonstrated in biofilms of Pseudomonas aeruginosa, a resistant opportunistic human pathogen that can cause severe complications in patients who are immunocompromised or have burn wounds or cystic fibrosis. P. aeruginosa biofilms have detrimental effects on health and industry, causing serious economic damage. In this study, the effect of titania photocatalysis for controlling P. aeruginosa biofilms was investigated by employing different coatings obtained through sol-gel and evaporation-induced self-assembly. Biofilms were grown on non-mesoporous and mesoporous titania surfaces with different pore sizes, which were achieved based on the use of surfactants Brij-58 and Pluronics-F127. In addition, two structural forms of titania were assayed: amorphous and anatase. As well as inhibiting biofilm formation, these coatings significantly enhanced the bactericidal effect of UVA on P. aeruginosa biofilms. The most efficient surface with regard to total antibacterial effect was the mesoporous Brij-58-templated anatase film, which, compared to control biofilms, decreased the number of viable bacteria by about 5 orders, demonstrating the efficacy of this methodology as a disinfection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.