Abstract
Bacterial biofilms are difficult to treat using available antimicrobial agents, so new antibiofilm strategies are needed. We previously showed that 20, 200, and 2,000 μA of electrical current reduced bacterial biofilms of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. Here, we tested continuous direct current at lower amperages, intermittent direct current, and combinations of surface materials (Teflon or titanium) and electrode compositions (stainless steel, graphite, titanium, or platinum) against S. aureus, S. epidermidis, and P. aeruginosa biofilms. In addition, we tested 200 or 2,000 μA for 1 and 4 days against biofilms of 33 strains representing 13 species of microorganisms. The logarithmic reduction factor was used to measure treatment effects. Using continuous current delivery, the lowest active amperage was 2 μA for 1, 4, or 7 days against P. aeruginosa and 5 μA for 7 days against S. epidermidis and S. aureus biofilms. Delivery of 200 μA for 4 h a day over 4 days reduced P. aeruginosa, S. aureus, and S. epidermidis biofilms on Teflon or titanium discs. A reduction of P. aeruginosa, S. aureus, and S. epidermidis biofilms was measured for 23 of 24 combinations of surface materials and electrode compositions tested. Four days of direct current delivery reduced biofilms of 25 of 33 strains studied. In conclusion, low-amperage current or 4 h a day of intermittent current delivered using a variety of electrode compositions reduced P. aeruginosa, S. aureus, and S. epidermidis biofilms on a variety of surface materials. The electricidal effect was observed against a majority of bacterial species studied.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.