Abstract

Foodborne microbial infections are leading cause of many deadly illnesses. As a result, there is an anticipated need for the development of innovative packaging materials with effective antibacterial potential. This article describes preparation and characterization of innovative ZnO@CeO2 nanocrystals through a facile hydrothermal method, as well as their outstanding antibacterial properties. The ZnO@CeO2 nanocrystals used were prepared using precursors zinc acetate and cerium nitrate at 180°C. Various sophisticated physicochemical parameters were used to assess nanocrystals. The antibacterial activity was examined using minimum inhibitory concentration technique against four major foodborne pathogenic bacteria, namely Staphylococcus aureus (Gram positive), Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae (Gram negative) at four distinct concentrations (0-400 µg/mL). The in vitro cell compatibility test was done on fibroblasts. According to our findings, the lowest concentration of ZnO@CeO2 nanocrystals limiting development of tested strains is 100 µg/mL. Additionally, the results show that the combination of ZnO and CeO2 can be synergistic, resulting in ZnO@CeO2 nanocrystals with enhanced antibacterial activity. To summarize, unique ZnO@CeO2 nanocrystals with a high surface-to-volume ratio with outstanding antibacterial activity and no harmful impact to mouse fibroblasts were shaped. The ZnO@CeO2 can be utilized to competently suppress microbial growth spoiling the food and could be utilized as economical and efficient future packaging material for food industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call