Abstract

AbstractInterfacial polymerization technology was employed to immobilize silver (Ag) nanoparticles on the surface of commercial polyethersulfone (PES) membrane to develop antibacterial and antifouling ultrafiltration membrane. Ag nanoparticles were prepared from the reduction of silver nitrate (AgNO3) by sodium borohydride in the presence of polyethyleneimine (PEI) as the stabilizer. The encapsulated Ag nanoparticles in the PEI solution were embedded into the PEI membrane when trimesoyl chloride solution was used to crosslink the PEI solution with the PES membrane, forming Ag‐polyamide (PA) networks through the interfacial polymerization reaction. Experimental results showed that the membrane prepared with 50 mmol/L of AgNO3 and 20 mmol/L of PEI had the optimized antibacterial effect against Escherichia coli. Bacterial concentration and species were also investigated. Exiguobacterium aestuarii and Staphylococcus aureus which are gram‐positive bacteria, needed significantly more time for the Ag‐PA/PES membrane to kill the bacteria completely when compared to E.coli and Vibrio coralliilyticus which are gram‐negative bacteria. This study showed that Ag nanoparticles impregnated in membrane surfaces were 100% effective in killing various types of marine bacteria and bacteria in the seawater collected off Sentosa Island in Singapore. These membranes exhibit excellent antibacterial and antifouling properties which can be used to kill bacteria in ballast water and seawater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call