Abstract

Sutures are a vital part for surgical operation, and suture-associated surgical site infections are an important issue of postoperative care. Antibacterial sutures have been proved to reduce challenging complications caused by bacterial infections. In recent decades, triclosan-free sutures have been on their way to commercialization. Alternative antibacterial substances are becoming relevant to processing surgical suture materials. Most of the antibacterial substances are loaded directly on sutures by dipping or coating methods. The aim of this study was to optimize novel antibacterial braided silk sutures based on levofloxacin hydrochloride and poly(ε-caprolactone) by two different processing sequences, to achieve suture materials with slow-release antibacterial efficacy and ideal physical and handling properties. Silk strands were processed into sutures on a circular braiding machine, and antibacterial treatment was introduced alternatively before or after braiding by two-dipping-two-rolling method (M1 group and M2 group). The antibacterial activity and durability against Staphylococcus aureus and Escherichia coli were tested. Drug release profiles were measured in phosphate buffer with different pH values, and release kinetics model was built to analyze the sustained drug release mechanism between the interface of biomaterials and the in vitro aqueous environment. Knot-pull tensile strength, thread-to-thread friction, and bending stiffness were determined to evaluate physical and handling properties of sutures. All coated sutures showed continuous antibacterial efficacy and slow drug release features for more than 5 days. Besides, treated sutures fulfilled U.S. Pharmacopoeia required knot-pull tensile strength. The thread-to-thread friction and bending stiffness for the M1 group changed slightly when compared with those of uncoated ones. However, physical and handling characteristics of the M2 group tend to approach those of monofilament ones. The novel suture showed acceptable in vitro cytotoxicity according to ISO 10993-5. Generally speaking, all coated sutures show potential in acting as antibacterial suture materials, and M1 group is proved to have a higher prospect for clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.