Abstract

The emergence of drug-resistant bacterial strains that reduce the effectiveness of antimicrobial agents has become a major ongoing health concern in recent years. It is therefore necessary to find new antibacterials with broad-spectrum activity against both Gram-positive and Gram-negative bacteria, and/or to use nanotechnology to boost the potency of already available medications. In this research, we examined the antibacterial efficacy of sulfamethoxazole and ethacridine lactate loaded two-dimensional glucosamine functionalized graphene-based nanocarriers against a range of bacterial isolates. Graphene oxide was first functionalized with glucosamine, which as a carbohydrate moiety can render hydrophilic and biocompatible characters to the GO surface, and subsequently loaded with ethacridine lactate and sulfamethoxazole. The resulting nanoformulations had distinct, controllable physiochemical properties. By analyzing the formulation using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (PXRD), a thermogravimetric analysis (TGA), zetasizer, and a morphological analysis using Scanning Electron Microscopy and Atomic Force Microscopy, researchers were able to confirm the synthesis of nanocarriers. Both nanoformulations were tested against Gram-negative bacteria, including Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica, as well as Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, and Streptococcus pneumoniae. Importantly, ethacridine lactate and its nanoformulations exhibited significant antibacterial properties against all bacteria tested in this study. When tested for minimum inhibitory concentration (MIC), the results were remarkable and revealed that ethacridine lactate presented MIC90 at 9.7 µg/mL against S. enteric, and MIC90 at 6.2 µg/mL against B. cereus. Notably, ethacridine lactate and its nanoformulations showed limited toxicity effects against human cells using lactate dehydrogenase assays. Overall, the results revealed that ethacridine lactate and its nanoformulations possess antibacterial activities against various Gram-negative and Gram-positive bacteria and that nanotechnology can be employed for the targeted delivery of effective drugs without harming the host tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call