Abstract

We report herein new nanofibers prepared from fish scale gelatine (FSG), modified polylactide (MPLA), and a natural antibacterial agent of freshwater clam (Corbicula fluminea Estefanía) shell powder (FCSP). A preparation of FSG from Mullet scales is also described. To improve the biocompatibility and antibacterial activity of the non-woven nanofibers, MPLA/FCSP was added to enhance their antibacterial properties. FSG was then combined with MPLA/FCSP using an electrospinning technique to improve the biocompatibility of the as-fabricated 100–500-nm-diameter non-woven MPLA/FCSP/FSG nanofibers. The resulting tensile properties and morphological characteristics indicated enhanced adhesion among FSG, FCSP, and MPLA in the MPLA/FCSP/FSG nanofibers, as well as improved water resistance and tensile strength, compared with the PLA/FSG nanofibers. MTT assay, cell-cycle, and apoptosis analyses showed that both PLA/FSG and MPLA/FCSP/FSG nanofibers had good biocompatibility. Increasing the FSG content in PLA/FSG and MPLA/FCSP/FSG nanofibers enhanced cell proliferation and free-radical scavenging ability, but did not affect cell viability. Quantitative analysis of bacteria inhibition revealed that FCSP imparts antibacterial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.