Abstract

BackgroundMicrobial/bacterial resistance against antibiotics poses a serious threat to public health. Furthermore, the side effects of these antibiotics have stimulated tremendous interest in developing new molecules from diverse organisms as therapeutic agents. This study evaluates the antibacterial potential of a basic protein, Vipera russellii venom phospholipase A2 fraction VIIIa (VRV-PL-VIIIa), from Daboia russelii pulchella venom against gram-positive and gram-negative bacteria.MethodsThe antibacterial potential of VRV-PL-VIIIa in the presence and absence of an inhibitor (p-bromophenacyl bromide) was tested against gram-positive and gram-negative bacteria and the minimum inhibitory concentration was determined by microdilution tests.ResultsVRV-PL-VIIIa demonstrated potent antibacterial activities against all the human pathogenic strains tested. It more effectively inhibited such gram-positive bacteria as Staphylococcus aureus and Bacillus subtilis, when compared to the gram-negative bacteria Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae and Salmonella paratyphi. It inhibited bacterial growth at minimum inhibitory concentration values ranging from 11.1 to 19.2 μg/mL. The anti-bacterial potential of VRV-PL-VIIIa was comparable to the standards gentamycin, chlorophenicol and streptomycin. The PLA2’s hemolytic and antibacterial activities were strongly correlated. Furthermore, even in the presence of p-bromophenacyl bromide, intense antibacterial activity was observed, suggesting a dissociation or partial overlapping of the bactericidal/antimicrobial domains.ConclusionVRV-PL-VIIIa demonstrated potent antibacterial activities against all the human pathogenic strains tested. The study shows that despite a strong correlation between enzymatic and antimicrobial activities of VRV-PL-VIIIa, it may possess additional properties that mimic the bactericidal/membrane permeability-increasing protein. This study encourages further in-depth studies on the molecular mechanisms of antibacterial properties of VRV-PL-VIIIa, which would thereby facilitate development of this protein into a possible therapeutic lead molecule for treating bacterial infections.

Highlights

  • Microbial/bacterial resistance against antibiotics poses a serious threat to public health

  • We evaluate the antibacterial potential of VRV-PL-VIIIa and investigate its possible biochemical mechanism of action

  • This study shows that VRV-PL-VIIIa – a PLA2 from Daboia russelii pulchella venom – presents potent antibacterial activity

Read more

Summary

Introduction

Microbial/bacterial resistance against antibiotics poses a serious threat to public health. Among the various components of snake venom, phospoholipase A2 (svPLA2) enzyme, apart from its catalytic activity of hydrolyzing the sn-2 ester bond of glycerophospholipids, shows other important toxic/pharmacologic effects that include myonecrosis, neurotoxicity, cardiotoxicity, as well as hemolytic, hemorrhagic, hypertensive, anticoagulant, platelet-aggregation-inhibiting and edemainducing activities [8, 9]. A phospholipase A2 from the venom of the saw-scaled viper with novel bactericidal and membrane-damaging activities was characterized [17] These molecules are shown to be highly attractive due to their biochemical diversity, and broad spectrum of activity against enveloped bacteria, fungi, viruses, protozoa, and parasites [6, 7, 18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call