Abstract

The scarcity of freshwater resources and increasing demand for drinking water have driven the development of durable and sustainable desalination technologies. Although MXene composites have shown promise due to their excellent photothermal conversion and high thermal conductivity, their high hydrophilicity often leads to salt precipitation and low durability. In this study, we present a novel Cellulose (CF)/MXene paper with a Janus hydrophobic/hydrophilic configuration for long-term and efficient solar-driven desalination. The paper features a dual-layer structure, with the upper hydrophobic layer composed of CF/MXene paper exhibiting convexness to serve as a photothermal layer with exceptional salt rejection properties. Simultaneously, the bottom porous layer made of CF acts as an efficient thermal insulation. This unique design effectively minimizes heat loss and facilitates efficient water transportation. The Janus CF/MXene paper demonstrates a high evaporation rate of 1.11 kg m−2h−1 and solar thermal conversion efficiency of 82.52 % under 1 sun irradiation. Importantly, even after 2500 h of operation in a simulated seawater environment, the paper maintains a stable evaporation rate without significant salt deposition and biodegradation due to an antibacterial rate exceeding 90 %. These findings highlight the potential of the Janus CF/MXene paper for scalable manufacturing and practical applications in solar-driven desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.