Abstract

The self-healing hydrogel offering intrinsic antibacterial activity is often required for the treatment of wounds because it can provide effective wound protection and prevent wound infection. Herein, antibacterial hyaluronic acid hydrogels with enhanced self-healing performances are prepared by multiple dynamic-bond crosslinking between aldehyde hyaluronic acid, 3, 3′- dithiobis (propionyl hydrazide) and fungal-sourced quaternized chitosan. Due to the formation of these different types of reversible interactions e.g. hydrazone bonds, disulfide bonds, and electrostatic interactions, the hyaluronic acid hydrogels can gel rapidly and exhibit excellent self-healing ability, which can heal completely within 1 h. Furthermore, the hydrogels show good antibacterial activity against E. coli and S. aureus with an inhibition ratio of ~100 % and above 75 %, respectively. Additionally, the hydrogels are cytocompatible, which makes them the potential for biomedical applications e.g. cell culture, tissue engineering, and wound dressing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call