Abstract

Hops and the components extracted from them are well known antibacterial agents used in beers and as food preservatives, in formulations for topical applications on their own or together with other antimicrobial agents, in hormone replacement therapy, as antioxidants, tumor development antagonists, and angiogenesis inhibitors. Their shortcomings: very low bioavailability, bitter taste, and susceptibility to oxidative decomposition have limited their applications. We propose nanosized chitosan, an inexpensive, readily available biopolymer with a broad spectrum of antibacterial activity, as carrier for lupulone (L) and xanthohumol (X), two components of hops. Chitosan nanoparticles (CNP) and chitosan-based nanocomposites encapsulating lupulone (CNL) and xanthohumol (CNX) were prepared by ionotropic gelation using sodium tripolyphosphate (TPP) as crosslinker. Different preparative ratios and conditions were investigated and the nanoparticles obtained were characterized by FTIR, colloidal titration, size, zeta potential, and antimicrobial activity. The kinetics of the release of L/X from composites was studied in vitro. All the nanoparticles were active against several Gram-positive, Gram-negative, and Candida strains. Synergistic interactions were observed in all cases, although hops are known mainly for their activity against Gram-positive bacteria. All nanoparticles showed good stability over several months.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.