Abstract

Bacteria is one of the main culprits that cause human diseases and pose long-term challenges to people’s health. Rare earth elements have unique antibacterial advantages, but little research is available. In this paper, we reported an antibacterial composite film based on lanthanum-doped carbon quantum dot nanoparticles (La@N-P-CQDs) and polyvinyl alcohol (PVA) film for fluorescence of antibiotics and accelerating wound healing. PVA/La@N-P-CQDs composite film presented excellent hydrophilicity, biocompatibility, fluorescence intensity, and antibacterial effects. The antibacterial activity of La@N-P-CQDs was evaluated by employing antibacterial assay using Escherichia coli (E.coli)and Staphylococcus aureus (S.aureus) in vitro. La@N-P-CQDs showed enhanced antibacterial activity compared with N-P-CQDs. Moreover, the PVA/La@N-P-CQDs composite film with 0.5 mg/mL La@N-P-CQDs showed better antibacterial capability and wound healing performance than PVA and PVA/N-P-CQDs films in bacterial adhesion experiment. PVA/La@N-P-CQDs composite film could be used for wound dressing in vivo experiment and had no side effects on major organs in mice. The antibacterial composite film significantly promoted in vivo wound healing process because of its multifunctional properties. Therefore, it was an excellent candidate for wound dressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.