Abstract

This work focuses on antibacterial efficacy and cellular toxicity of PET-based hollow fiber with silver particles incorporated (Ag/PET hollow fiber), which was synthesized by differential pressure method. Escherichia coli (E. coli) were used to investigate the antibacterial capability of Ag/PET hollow fiber with antibacterial kinetics experiments. The antibacterial results demonstrated that Ag/PET hollow fiber had an excellent antibacterial property against E. coli and the efficacy was dependent on several aspects including fiber length, weight and silver content. The cytotoxicity of Ag/PET hollow fibers on WI-38 cells was assessed using Methyl Thiazolyl Tetrazolium (MTT) assay, and the results showed no significant toxicity to WI-38 cells. SEM images of WI-38 cells treated by Ag/PET hollow fibers showed that cells morphology was unaltered in the presence of Ag/PET hollow fiber. However, abnormal size, shrinkage and rounded appearance of cells at higher dose suggested slight toxicity of Ag/PET hollow fiber. Combining the antibacterial and cytotoxic results, it was found that there was a certain concentration of silver ions which can achieve a minimization of cytotoxicity and a maximization of antibacterial efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.