Abstract

Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO2 layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO2 nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.