Abstract

Nosocomial infections have become a serious threat in our times and are getting more difficult to handle due to increasing development of resistances in bacteria. In this light, cold atmospheric plasma (CAP), which is known to effectively inactivate microorganisms, may be a promising alternative for application in the fields of dentistry and dermatology. CAPs are partly ionised gases, which operate at low temperature and are composed of electrons, ions, excited atoms and molecules, reactive oxygen and nitrogen species. In this study, the effect of CAP generated from ambient air was investigated against Enterococcus faecalis, grown on agar plates or as biofilms cultured for up to 72 h. CAP reduced the colony forming units (CFU) on agar plates by > 7 log10 steps. Treatment of 24 h old biofilms of E. faecalis resulted in CFU-reductions by ≥ 3 log10 steps after CAP treatment for 5 min and by ≥ 5 log10 steps after CAP treatment for 10 min. In biofilm experiments, chlorhexidine (CHX) and UVC radiation served as positive controls and were only slightly more effective than CAP. There was no damage of cytoplasmic membranes upon CAP treatment as shown by spectrometric measurements for release of nucleic acids. Thus, membrane damage seems not to be the primary mechanism of action for CAP towards E. faecalis. Overall, CAP showed pronounced antimicrobial efficacy against E. faecalis on agar plates as well as in biofilms similar to positive controls CHX or UVC.

Highlights

  • ObjectivesThe aims of this study were (1) to investigate the antimicrobial efficacy of cold atmospheric plasma (CAP) with a novel surface micro-discharge (SMD) technology in a thin-film design towards E. faecalis in planktonic cultures as well as in biofilms and (2) to evaluate whether CAP treatment leads to cytoplasmic membrane damage as measured by leakage of cytoplasmic components upon treatment

  • Within the last 10 years, treatment of infectious diseases such as wound infections of the skin and the mucous membranes has become increasingly more complicated and ineffective due to the emergence of drug-resistant bacteria

  • This prototype consists of one surface micro-discharge (SMD) plasma source with thin-film design composed of an insulator plate made out of Al2O3, a high voltage (= HV) electrode coated with Cu and Sn electrode and a structured electrode, meaning an electrically grounded stainless-steel mesh electrode

Read more

Summary

Objectives

The aims of this study were (1) to investigate the antimicrobial efficacy of CAP with a novel surface micro-discharge (SMD) technology in a thin-film design towards E. faecalis in planktonic cultures as well as in biofilms and (2) to evaluate whether CAP treatment leads to cytoplasmic membrane damage as measured by leakage of cytoplasmic components upon treatment. The first goal of this study was to prove that a new CAP device can kill E. faecalis seeded as planktonic cultures on agar plates. We aimed to determine whether damage of cytoplasmic membranes may be the primary antimicrobial mechanism of CAP generated by SMD technology

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call