Abstract

Background/purpose The retrograde filling material, particularly mineral trioxide aggregate (MTA) employed in apicoectomy, should possess high antibacterial efficacy and osteogenic potential. We evaluated the antibacterial efficacy, biocompatibility, and osteogenic potential following the addition of silver nanoparticles (AgNPs) and calcium fluoride (CaF2) in retrograde filling material of MTA. Materials and methodsMTA was mixed with four different solvents. Group 1 (G1): distilled water, Group 2 (G2): 50 ppm AgNPs, Group 3 (G3): 1 wt% CaF2, and Group 4 (G4): 50 ppm AgNPs and 1 wt% CaF2. The pH variation of each group was monitored, while the surface roughness was measured. The antibacterial efficacy against Enterococcus faecalis (E. faecalis) and the viability of murine pre-osteoblast (MC3T3) were evaluated for each group using colorimetric assays. The gene expression levels of osteogenic potential marker (OCN, ALPL, and RUNX2) in MC3T3 cells for each group were quantified using real-time-qPCR. Statistical analysis was performed at α = 0.05 level of significance. ResultsWhen comparing the levels of antibacterial efficacy, the order of effectiveness was G4>G2>G3>G1 (P < 0.05). In the cell viability test, owing to MTA-eluted growth medium having a positive effect on MC3T3 cell proliferation, G1–4 exhibited a statistically increased cell viability compared to the control (P < 0.05). However, G2–4 did not result in a statistically significant difference when compared to G1 (P < 0.05). Moreover, G4 exhibited the highest gene expression among the four groups (P < 0.05). ConclusionThe addition of AgNPs and CaF2 to MTA could be a promising option for use as a new retrograde filling material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call