Abstract
The antibacterial effects of a polychromatic light device designed for intravenous application were assessed in vitro. Staphylococcus aureus, Klebsiella pneumoniae, or Escherichia coli were exposed to a 60-min sequential light cycle comprising 365, 530, and 630 nm wavelengths in circulated sheep blood. Bacteria were quantified by viable counting. The potential involvement of reactive oxygen species in the antibacterial effect was assessed using the antioxidant N-acetylcysteine-amide. A modified device was then used to determine the effects of the individual wavelengths. Exposure of blood to the standard wavelength sequence caused small (c. 0.5 Log 10 CFU) but statistically significant reductions in viable counts for all three bacteria, which were prevented by the addition of N-acetylcysteine-amide. Bacterial inactivation did not occur in blood-free medium, but supplementation with haem restored the moderate bactericidal effect. In single-wavelength experiments, bacterial inactivation occurred only with red (630 nm) light. Concentrations of reactive oxygen species were significantly higher under light stimulation than in unstimulated controls. In summary, exposure of bacteria within blood to a cycle of visible light wavelengths resulted in small but statistically significant bacterial inactivation apparently mediated by a 630 nm wavelength only, via reactive oxygen species possibly generated by excitation of haem groups.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.