Abstract

This study investigated the antibacterial effects of ultrasound (US), β-citronellol (CT), and a combination of the two treatments on Listeria monocytogenes. Results showed that US or CT alone did not show apparent antibacterial effect (0.02–0.76 log CFU/mL reduction). The combined treatment showed obviously inactivate effect of L. monocytogenes, the populations of L. monocytogenes decreased by 8.93 log CFU/mL after US (253 W/cm2, 20 kHz) + 0.8 mg/mL CT treatment. US + CT treatment also had a significant (P < 0.05) antibacterial effect on isolates of L. monocytogenes from three different serotypes. In this study, the damage of US + CT on cell morphology had been observed using field emission scanning electron microscopy, while the damage to cell membranes by US + CT was observed by confocal laser scanning microscopy and flow cytometry. Meanwhile, the uptake of N-phenyl-l-naphthylamine and the absorbance at 260 and 280 nm also indicated that the combined treatment disrupted the permeability and integrity of L. monocytogenes membranes. Reactive oxygen species and malondialdehyde assays showed that US + CT exacerbated cellular oxidative stress and lipid peroxidation. In addition, the US + CT treatment reduced L. monocytogenes by 3.14–4.24 log CFU/g on the surface of carrots. Total phenolic and carotenoid contents in carrots were elevated after US + CT treatment. During storage, compared to control, US + CT did not significantly (P > 0.05) change the surface color of carrots but significantly (P < 0.05) decreased both hardness and weight, and has an impact on the sensory. This study showed that US + CT is a promising cleaning method that will provide new ideas for the preservation of fresh agricultural produce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call