Abstract

Restorations in dentistry must reproduce the aspect of the patient’s natural teeth and require non-toxicity, biocompatibility, and good mechanical properties in order to last longer. Restorations are permanently in contact with microbes that can adhere to and form biofilms. The purpose of this study was to determine the adhesion extent of Streptococcus mutans to polymethyl methacrylate (PMMA) resin base containing TiO2 nanoparticles. To understand the adhesion of Streptococcus mutans on the modified resin-based surfaces, the following surface properties were measured: the roughness, contact angle, zeta potential and CIE color parameters. Evaluation of tensile stress performance in TiO2 modified PMMA showed that the maximum tensile stress of the modified PMMA resin decreases with an increasing amount of TiO2 nanoparticles. The increasing amount of TiO2 decreases the roughness and causes contact angles in the border between hydrophilic and hydrophobic surfaces. All the studied surfaces are negatively charged and added TiO2 tends to increase the zeta potential. The addition of TiO2 nanoparticles increases the lightness and decreases the intensity of the red and yellow color. The increasing addition of TiO2 nanoparticles into PMMA increases the morphological change of bacterial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.