Abstract

Objective(s): A large ratio of surface to volume of nanoparticles in comparison with bulk ones, will increase the cell penetration and therefore their toxicity. Materials and Methods: Chemical precipitation method was used in order to synthesis of ZnS:Ag quantum dots. Their Physical properties and characteristics were assessed by X-ray diffraction, Ultra Violet-Visible Spectrophotometer, Transmission Electron Microscope and it was shown that the obtained ZnS:Ag quantum dots are cubic with high-quality. Antibacterial effects of ZnS:Ag nanoparticles against Pseudomonas aeroginosa, Staphylococcus aureus and Salmonella typhi were investigated. Disc bacteriological tests were used in order to assessment of the antibacterial effects of ZnS:Ag nanoparticles. Results: The size of inhibition zone was different according to the type of bacteria and the concentrations of ZnS:Ag QDs. The maximum diameter was happened for S. aureus. The results of MICs obtained fromBroth Dilution for Pseudomonas aeruginosa , Staphylococcus aureus and Salmonella typhi, are 3.05 , 3.05 and 6.1 mg/ml whereas the amounts of obtained MBCs are 12.2 , 6.1 and 12.2 mg/ml respectively. Conclusion: In conclusion, by increasing the nanoparticle concentration in wells and discs, the growth inhibition and diameter of inhibition zone has also been increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call