Abstract

Anopheles mosquitoes became one of the biggest problems threaten human life through causing malaria disease. Hereby, Selenium nanoparticles (Se-NPs) as anti-victor malaria were fabricated for the first time through Penicillium corylophilum in presence of ascorbic acid as a reducing agent. Antibacterial versus pathogenic Gram +Ve and Gram −Ve bacteria, as well, in vitro cytotoxicity against two types of cell lines (normal Wi 38 and cancer Caco-2) were explored prolonging with their larvicidal activity towards Anopheles stephensi mosquitoes. Se-NPs is characterized by UV–Vis spectroscopy, FT-IR, TEM, EDX, XRD, DLS. Results affirmed the ability of Penicillium corylophilum to build up Se-NPs in spherical shape with average size 29.1–48.9 nm. In addition, Se-NPs exhibited broad spectrum activity against pathogenic Gram +Ve and Gram −Ve bacteria, while the results obtained from cytotoxicity evaluation signified clearly that, alteration occurred in the cells was represented as loss of their typical shape, partial or complete loss of monolayer, granulation, shrinking or cell rounding with IC50 value of 171.8 and 104.3 ppm Wi 38 and Caco-2 cell lines respectively, which revealing the high toxicity of Se-NPs towards cancer cells compared with normal cells. However, Se-NPs displayed larvicidal activity against causative malaria vector Anopheles stephensi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.