Abstract

Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call