Abstract

AbstractSilicon nitride‐based ceramics have provided significant advantages due to their high chemical resistance, high elastic modulus, and combination of hardness and fracture toughness (depending on self‐reinforcement). Over the past two decades, a significant amount of interest has been generated for the bio‐applications of these materials. However, the effect of the grain boundary phase on such applications is still not very well understood. In this study, the effect of different cations on biological (such as antibacterial and cytocompatibilty) and material properties (like wetting angles and isoelectric points [IEP]) of oxynitride glasses, mimicking the grain boundary phase in Si3N4 and SiAlON ceramics, were investigated. Results revealed that the antibacterial behavior and mammalian cell viability were inversely correlated in glasses with rare‐earth cation additions. Ca was the best cation when the two properties (bacterial response and cell proliferation) were considered together, and, thus should be further studied for a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.