Abstract

The current study evaluates the biogenesis of silver nanoparticles (Ag NPs) utilizing an aqueous extract of Alternanthera sessilis (Linn.) leaf. Biological nanoparticle production has recently gained appeal due to its eco-friendliness, simplicity, cost-effectiveness, non-hazardous nature and difficult circumstances. Aqueous extract of Alternanthera sessilis leaf contains terpenoids, carbohydrates and flavonoids to convert metal ions into metal and so stabilize the resultant nanoparticles. The UV-visible spectrophotometer obtained a distinctive peak at 420 nm, the XRD validated the crystalline FCC nature of biogenic Ag NPs and the FTIR and zeta-potential (± 14) tests revealed that phyto-chemicals were responsible for reduction and stabilization of Ag NPs. TEM examination revealed a spherical form and size of about 24 nm. The biogenic Ag NPs displayed intriguing dose-dependent antioxidant activity, with an EC50 percent of 69.9g/mL and a maximum activity of 66.36 at 150 μg/mL against DPPH, as well as considerable catalytic activity against Eosin-Y red dye, 84% of Eosin-Y dye destroyed after 60 min. Furthermore, the experiments demonstrated that Ag NPs were more effective against Gram-negative bacteria than Gram-positive bacteria and also show the anticancer activity against Hela cells and breast cancer cell line (MCF-7).The anticancer activity is more potent in higher concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call