Abstract

Green synthesis of silver nanoparticles has gained attention due to its simple process of synthesis and varied applications. Scientists have tried its synthesis from a wide range of materials, but there is lack of reports that can use the metabolites of insects. Here in this study, we have used the spider silk protein which is considered as complete waste collected from household and field sources and processed to synthesize silver nanoparticles which were subsequently analyzed using different analytical tools like SEM, TEM, FTIR, and XRD. The spider silk protein-mediated synthesized nanoparticle (SP-AgNPs) showed a sharp peak at 420 nm when analyzed spectrophotometrically giving an indication of successful synthesis of AgNP. The synthesized nanoparticle ranges from 10 to 40 nm and were of varied shapes. The synthesized SP-AgNPs showed remarkable antibacterial activity. The MIC values against B. subtilis and E. coli were recorded 45 and 40 μg/mL respectively. Further to know the mechanisms of antibacterial activity protein leakage and conductivity measurement were conducted. The synthesized nanoparticle also showed excellent antibiofilm activity with inhibition percentages of 74 % and 68 % for E. coli and B. subtilis respectively at MIC concentration of the treatment. Finally, the synthesized nanoparticles was applied as mosquito larvicidal agent against Culex sp. and the difference between LC50 and LD90 value was recorded as statistically significant (p < 0.0267) during 24 h of incubation. Therefore, it can be said that spider-web could be an excellent biological reducing and capping agent for heavy metal nanoparticle synthesis that can minimize the ailments caused by mosquitoes and pathogenic microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call