Abstract

This work focuses on the structural, morphological, optical, photocatalytic, antibacterial properties of pure CeO2 nanoparticles (NPs) and graphene oxide (GO) based CeO2 nanocomposites (GO-1/CeO2, GO-5/CeO2, GO-10/CeO2, GO-15/CeO2), synthesized using the sol–gel auto-combustion and subsequent sonication method, respectively. The single-phase cubic structure of CeO2 NPs was confirmed by Rietveld refined XRD, HRTEM, FTIR and Raman spectroscopy. The average crystallite size was calculated using Debye Scherrer formula and found to increase from 20 to 25 nm for CeO2 to GO-15/CeO2 samples, respectively. The related functional groups were observed from Fourier transform infrared (FTIR) spectroscopy, consistent with the outcomes of Raman spectroscopy. The optical band gap of each sample was calculated by using a Tauc plot, which was observed to decrease from 2.8 to 1.68 eV. The valence state of Ce (Ce3+ and Ce4+) was verified using X-ray photoelectron spectroscopy (XPS) for CeO2 and GO-10/CeO2. The poisonous methylene blue (MB) dye was used to evaluate the photocatalytic activity of each sample in direct sunlight. The GO-15/CeO2 nanocomposite showed the highest photocatalytic activity with rate constant (0.01633 min–1), and it degraded the MB dye molecules by 100% within 120 min. The high photocatalytic activity of this material for degrading MB dye establishes it as an outstanding candidate for wastewater treatment. Further, these nanocomposites also demonstrated excellent antimicrobial activity against Pseudomonas aeruginosa PAO1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.