Abstract
The emergence of antibiotic resistance to commercially- available antibiotics is becoming a major health crisis worldwide. Non-antibiotic strategies are needed to combat biofilm-associated infectious diseases caused by multidrug resistant (MDR) bacterial pathogens. In this study, MBR1 was isolated from a membrane bioreactor used in wastewater treatment plants, and the resistance profile was explored. 5-Nitroindole (5 N)-capped CuO/ZnO bimetal nanoparticles (5 NNP) were synthesized using a one pot method to improve the antibacterial and antibiofilm activities of 5 N against Gram-negative (Escherichia coli ATCC700376 and Pseudomonas aeruginosa PA01) and positive (Staphylococcus aureus ATCC6538) human pathogens. 5 NNP containing 1 mM of 5 N exhibited strong antibacterial and antibiofilm properties to most MDR bacteria. In addition, the photocatalytic activity of CuO/ZnO reduced bacterial cell growth by 1.8 log CFU/mL maximum when exposed to visible light. Scanning electron microscopy showed that 5 NNP reduced the cell density and biofilm attachment of MBR1 by >90% under static conditions. In addition to the antimicrobial and antibiofilm activities, 5 NNP inhibited the persister cell formation of MDR bacterial strains P. aeruginosa, MBR1, E. coli and S. aureus. Therefore, it is speculated that 5 NNP potentially inhibits biofilm and persister cells; hence, 5 NNP could be an alternative agent to combat MDR infectious diseases using a non-antibiotic therapeutic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.