Abstract
Antibacterial hemostatic medical dressings have become feasible solutions in response to the challenging wound-healing process. In this study, a novel fiber-type medical dressing with excellent breathable, antibacterial, and hemostatic qualities was created using sodium alginate (SA), microcrystalline cellulose (MCC), polyvinyl alcohol (PVA), and Euphorbia humifusa Willd (EHW) based on microfluidic spinning technology, and the properties of the dressing were characterized. The orthogonal test demonstrates that PVA and MCC can enhance the mechanical properties of the fiber, which is a crucial requirement for fiber assembly to form the dressing. Moreover, the presence of EHW enhances the dressing's antibacterial and hemostatic qualities. The dressings have been proven to have potent antibacterial and hemostatic properties as well as the ability to considerably speed up wound healing and skin tissue regeneration in the in-vitro and in-vivo tests. In conclusion, this innovative fiber-type medical dressing containing SA, MCC, PVA, and EHW has enormous potential for managing wounds caused by bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.