Abstract

Titanium implants possessing excellent antibacterial activity are highly desirable for the prevention of implant-associated infections. In this study, we demonstrate a simple one-step, water-based procedure for the fabrication of biofunctionalized nanocomposites on titanium for implant application. The formation of biofunctionalized silver nanoparticles with varied biomolecule templates is confirmed by Fourier-transform infrared spectroscopic, contact angle, field-emission scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry analysis. Antibacterial properties of the specimens were determined by challenging them against Staphylococcus aureus The Ag-incorporated titanium shows excellent antibacterial ability against planktonic bacteria in the suspension and ability to prevent bacterial adhesion. The specimens with optimized biomolecule/silver ratio promote osteoblast differentiation. These biofunctionalized silver nanoparticles-doped titanium specimens, with improved antibacterial activity while maintaining healthy osteoblast cellular activity, have promising application in orthopedics, dentistry, and other biomedical devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.