Abstract

Photocatalytic antibacterial and biofilm-preventive activity in liquid of heavy-metal-free coatings based on a phosphorus (P)- and fluorine (F)-modified TiO2 photocatalyst has been investigated. They reveal significantly higher immediate and longer-term (biofilm-preventive) inactivation capacity than a reference coating made of the commercial photocatalyst TiO2 P25 on three bacterial species differing in cell wall type and ability to resist oxidative stress (Escherichia coli, Staphylococcus epidermidis, Pseudomonas fluorescens) (up to more than 99% reduction of colonization on P/F-modified TiO2 coating compared to about 50% on P25 TiO2 coating for 10 min UV-A illumination). This results from the P- and F-induced improvement of photocatalyst properties and from the smoother surface topography, which shortens reactive oxygen species (ROS) diffusion to the outer membrane of the targeted adhered bacteria. Decrease in ROS-related impairment of cell wall, respiratory, and enzymatic activities confirms the loss of ROS throughout the bacterial cell degradation. Staphylococcus epidermidis and Pseudomonas fluorescens are less sensitive than Escherichia coli, with a probable relation to the bacterial oxygen stress defense mechanism. The coating antibacterial efficacy was highly affected by phosphate ions and the richness in dissolved oxygen of the reaction medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.