Abstract

An effective antibacterial system was developed by using cellulose nanocrystals (CNC) to stabilize lemongrass essential oil Pickering emulsion (PE-LEO) through ultrasonication technology. The factors affecting the formation and stability of PE-LEO were studied, such as ultrasonication times, CNC concentrations, lemongrass essential oil (LEO) concentrations. By size and zeta index, the most suitable sample was 8 ultrasonication times, 0.8% CNC, 15% LEO. The antibacterial and anti-fungal performance of PE-LEO was investigated by determining the minimal inhibitory concentrations (MIC). The results showed that for gram-positive bacteria (E.faecalis, S.aureus, MRSA), the MIC of PE-LEO was much higher than LEO, the opposite was true for gram-negative bacteria (E. coli) and fungi. Based on the concentrations of LEO, with IC50 of PE-LEO is 0.30% vLEO/v, which is significantly lower than that of LEO (0.99%). The CNC-stabilized PE-LEO exhibited higher antioxidation activity at equivalent LEO concentrations. The fabricated CNC based Pickering emulsions provide a promising alternative for the delivery of antimicrobial essential oils in the food industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call