Abstract

Pickering emulsion polymerization, stabilized by inorganic nanoparticles such as iron oxide nanoparticles (IONPs), can be used to fabricate scaffolds with the desired porosity and pore size. These nanoparticles create stable emulsions that can be processed under harsh polymerization conditions. IONPs, apart from serving as an emulsifier, impart beneficial bioactivities such as antibacterial and pro-angiogenic activity. Here, we coated IONPs with three different weights of oleic acid (5.0 g, 7.5 g, and 10.0 g) to synthesize oleic acid-IONPs (OA-IONPs) that possess the desired hydrophobicity (contact angle > 100°). Next, glycidyl methacrylate and trimethylolpropane triacrylate were polymerized using the Pickering emulsion polymerization technique stabilized by the OA-IONPs. The physicochemical properties of the resulting porous scaffolds were thoroughly characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), and a universal testing machine (UTM). The SEM images confirmed the formation of a porous scaffold. The IONPs content, measured using inductively coupled plasma mass spectrometry (ICP-MS), was in the range of 22–26 µg/mg of the scaffold. The mechanical strengths of the scaffolds were in the range of cancellous bone. The degradation profile of the scaffolds varied between 29% and 41% degradation over 30 days. In vitro cytotoxicity studies conducted using the fibroblast (L929) and osteosarcoma (MG-63) cell lines proved that these scaffolds were non-toxic. SEM images showed that the MG-63 cells adhered firmly to the scaffolds and exhibited a well-spread morphology. The antibacterial activity was confirmed by percentage inhibition studies, SEM analysis of bacterial membrane distortion, and reactive oxygen species (ROS) generation in the bacteria. Chick chorioallantoic membrane assay showed that the total vessel length and branch points were significantly increased in the presence of the scaffolds. These results confirm the pro-angiogenic potential of the fabricated scaffolds. The physicochemical, mechanical, and biological properties of the material suggest that the developed scaffolds would be suitable for bone tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.