Abstract

Traditional Chinese medicines (TCMs), as a unique natural medicine resource, were used to prevent and treat bacterial diseases in China with a long history. To provide a prediction model of screening antibacterial TCMs for the design and discovery of novel antibacterial agents, the literature about antibacterial TCMs in the China National Knowledge Infrastructure (CNKI) and Web of Science database was retrieved. The data were extracted and standardized. A total of 28,786 pieces of data from 904 antibacterial TCMs were collected. The data of plant medicine were the most numerous. The result of association rules mining showed a high correlation between antibacterial activity with cold nature, bitter and sour tastes, hemostatic, and purging fire efficacies. Moreover, TCMs with antibacterial activity showed a specific aggregation in the phylogenetic tree; 92% of them came from Tracheophyta, of which 74% were mainly concentrated in rosids, asterids, Liliopsida, and Ranunculales. The prediction models of anti-Escherichia coli and anti-Staphylococcus aureus activity, with AUC values (the area under the ROC curve) of 77.5 and 80.0%, respectively, were constructed by the Neural Networks (NN) algorithm after Bagged Classification and Regression Tree (Bagged CART) and Linear Discriminant Analysis (LDA) selection. The in vitro experimental results showed the prediction accuracy of these two models was 75 and 60%, respectively. Four TCMs (Cirsii Japonici Herba Carbonisata, Changii Radix, Swertiae Herba, Callicarpae Formosanae Folium) were proposed for the first time to show antibacterial activity against E. coli and/or S. aureus. The results implied that the prediction model of antibacterial activity of TCMs based on properties and families showed certain prediction ability, which was of great significance to the screening of antibacterial TCMs and can be used to discover novel antibacterial agents.

Highlights

  • IntroductionAntibiotics are effective drugs for the treatment of infections

  • Bacterial diseases remain the primary cause of morbidity and mortality worldwide

  • The frequency analysis results on the properties of antibacterial Traditional Chinese medicines (TCMs) showed that most medicines were cold nature, bitter, pungent and sweet tastes

Read more

Summary

Introduction

Antibiotics are effective drugs for the treatment of infections. It is estimated that 10 million people will die from infections caused by drug-resistant per year by 2050 if the current situation is without intervention. Antibacterial drugs kill pathogenic bacteria and may damage or inhibit normal bacteria at the same time, which causes bacterial flora disorder, so that the human body’s resistance is reduced (Cheng et al, 2017). Even some antibacterial drugs can cause rare side effects such as hypoglycemia, bone marrow suppression, and hyponatremia. Studies have shown that a declining trend in antimicrobial resistance and the current space of bacterial resistance exceeds that of the speed of the development of new drug research (Schäberle and Hack, 2014; Lewis, 2020). It is of great significance to develop new classes of antibacterial drugs

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.