Abstract

From the reaction of amoxicillin (1) antibiotic with 2,6−diaminopyridine (2) an amoxicillin−based Schiff base (HL) (3) was obtained and its transition metal Schiff base complexes were synthesized. Spectroscopic and physicochemical techniques, namely, UV−Vis, FT−IR, 1H−NMR, EPR, mass spectrometry, molar conductance, magnetic susceptibility, molecular modelling, together with elemental and thermal analyses, were used to characterize the synthesized compounds. Spectral and magnetic data suggested an octahedral geometry for all the complexes and the general formulae [ML(H2O)3][PF6] (M(II) = Mn2+ (4), Co2+ (5), Ni2+ (6), Cu2+ (7), Zn2+ (8), was proposed for them, where L represents deprotonated tridentate NNO amoxycillin−derived Schiff base. All compounds were screened for antibacterial activity by using agar disc diffusion method. The zinc(II) complex exhibited promising bactericidal activity against E. coli and S. aureus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.