Abstract

Various kinds of inorganic substances doped with silver ions have been developed as antibacterial materials, and some have already been commercialized. Previously, we successfully prepared colorless silica glass microspheres doped with silver ions in combination with aluminum ions by a sol-gel method. However, the antibacterial activity of the microspheres was not maintained for long periods in an aqueous environment, since the silver ions were located only in a thin layer near the surface of the microspheres. In this study, silica glass microspheres in which silver ions are uniformly distributed were attempted to be prepared. A tetraethoxysilane ethanol solution was mixed with aqueous silver nitrate and aluminum nitrate solutions to be subjected to almost simultaneous hydrolysis and polycondensation. An ammonia solution was then added, to form microspheres. Monodispersed microspheres about 0.1 microm in diameter were obtained, which did not show coloring even after heat treatment at 600-1000 degrees C, indicating that the silver in the microspheres took the form of Ag(+) ions and not colloid, even after the heat treatments. Microspheres heat-treated at temperatures ranging from 700 to 800 degrees C showed much higher antibacterial activity than commercial antibacterial zeolites and maintained their high antibacterial activities for long periods in an aqueous environment. Polypropylene plates and films mixed with the microspheres heat-treated at 800 degrees C showed excellent antibacterial properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.