Abstract

In this research, the fabrication of MCM-41 mesoporous material nanofibers by an electrospinning technique was performed. The MCM-41 nanofibers (MCM-41 NFs) as a novel host on the incorporation of silver has been studied in [Ag(NH3)2]NO3 precursor solution through the heat-treatment process. The formation of silver-loaded MCM-41 NFs at various calcinating temperatures were also studied. The silver-containing materials (Ag/MCM-41 NFs) were characterized using Fourier Transform InfraRed (FT-IR) spectroscopy, powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), UltraViolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Transmission Electron Microscopy (TEM). The results indicated that both Ag and Ag2O NanoParticles (NPs) were loaded in MCM-41 NFs at different calcinating temperature. Silver compounds with a diameter of 10−15 nm were highly dispersed in the framework of mesoporous silica nanofibers. The results indicated that Ag loading contents on the MCM-41NFs were 10.53 wt%. These Ag/MCM-41 NFs Possess an enhanced antibacterial effective against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver NPs and continuously releasing silver ions. In general, the silver-containing materials with more Ag2O NPs demonstrated an excellent antibacterial activity. The Minimum Inhibitory Concentrations (MIC) obtained 30 and 60 µg/mLfor the silver-containing MCM-41 NFs with more Ag2O NPs against E. coli and S. aureus, respectively. MCM-41 type nanofibers play an important role in the antibacterial activity of nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call