Abstract
In the present study, aqueous extract of Cissus rotundifolia (Wild edible plants) was used as a reducing and capping agent in the formation of silver nanoparticles (AgNPs). UV-visible spectroscopy (Uv-Vis) was used to monitor the formation of AgNPs in the aqueous medium. The green-prepared AgNPs investigated using Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The susceptibility of bacteria strains against the green synthesis AgNPs was determined using the disk diffusion method. The microorganisms employed were E. coli, K. pneumoniae, B. cereus, S. aureus, C. lbicans and Aspergillus. The results showed the characteristic surface plasmon resonance peak of the AgNPs appeared at approximately 418 - 446 nm. XRD revealed peaks at 38.2, 44.16, 64.24 and 77.22 θ, and the intensity of these peaks enhanced when using microwave curing compared to ambient temperature. SEM and TEM results showed that the silver nanoparticles have a spherical shape and the particle size for samples is less than 37 nm. FTIR spectroscopy measurements showed the binding of organic compounds on the surface of the silver nanoparticles. The highest antibacterial activity was enhanced with increasing of AgNPs dose and with increasing of extract ration against most of microorganisms.
Highlights
Green reduction of Ag+ by C. rotundifolia extract was monitored by observing the colour of silver solutions that changed from colourless, to yellow, brown and reddish brown as evidence of silver ion reduction, Figure 1(c), increasing the silver nanoparticles concentration and changing the particle morphology
The UV-Vis spectroscopy investigation of the prepared agent in the formation of silver nanoparticles (AgNPs) showed that the size and shape of AgNPs influence the shape and position of the UV-Vis absorption peaks from plasmon resonance
When the complex compound Ag+− C. rotundifolia was reduced to Ag0− cissus, the organic molecules endow AgNPs with excellent dispersibility
Summary
C. rotundifolia (Forsk) Vahl is known as a common Arabian Wax Cissus This wild plant is commonly used as food thickeners and their leaves only are widely consumed after cooking to prepare various dishes according to traditional dietary culture of locals. Rajeshkumar [25] investigated the antibacterial activity of biosynthesized silver nanoparticles using the fresh bark extract of Pongamia pinnata against gram positive (Klebsiella planticola) and gram negative (Staphylococcus aureus) bacteria. The antibacterial activity of bio capped Ag NPs with leaf extracts of Commiphora caudata shows that these particles have higher inhibitory action for Escherichia coli, Klebsiella pheumoniea, Micrococcus flavus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus [28]. The current investigation was carried out to screen the antibacterial activity of green synthesis silver nanoparticles using wild edible plants extract against some pathogenic bacterial strains
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.