Abstract

The resistance of bacteria against the use of conventional antibiotics has become a serious threat to public health and considering the associated side effect with antibiotics; new strategies to find and develop new molecules with novel modes of action has received grate attention in recent years. In this study, when the antibacterial potential of an acidic protein—NN-XIb-PLA2 (Naja naja venom phospholipase A2 fraction—XIb) of Naja naja venom was evaluated, it showed significant bactericidal action against the human pathogenic strains tested. It inhibited more effectively the gram positive bacteria like Staphylococcus aureus and Bacillus subtilis, when compared to gram negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiell pneumoniae and Salmonella paratyphi. It inhibited the bacterial growth, with a MIC values ranging from 17 to 20 µg/ml. It was interesting to observe that NN-XIb-PLA2 showed comparable antibacterial activity to the used standards antibiotics. It was found that their was a strong correlation between PLA2 activities, hemolytic and antibacterial activity. Furthermore, it is found that in the presence of p-bromophenacyl bromide (p-BPB), there is a significant decrease in enzymatic activity and associated antibacterial activities, suggesting that a strong association exists between catalytic activity and antimicrobial effects, which thereby destabilize the membrane bilayer. These studies encourage further in dept study on molecular mechanisms of bactericidal properties of NN-XIb-PLA2 and thereby help in development of this protein into a possible therapeutic lead molecule for treating bacterial infections.

Highlights

  • Worldwide increase in resistance of bacteria for the use of antibiotics and the undesirable side effects associated with it has become a serious public health problem (Norrby et al 2005; Choudhury et al 2012; Echols 2012; Ghafur 2013)

  • Authentic pure clinical isolated cultures of human pathogenic bacteria; Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhi, Vibrio cholerae, Klebsiella pneumoniae and Salmonella paratyphi were obtained from the Microbiology Department, Adichunchanagiri Institute of Medical Sciences (AIMS), B.G

  • Snake venom PLA2s, apart from their well known diverse biological/pharmacological function are known to act as antibacterial agents (Samy et al 2012; de Oliveira Junior et al 2013)

Read more

Summary

Introduction

Worldwide increase in resistance of bacteria for the use of antibiotics and the undesirable side effects associated with it has become a serious public health problem (Norrby et al 2005; Choudhury et al 2012; Echols 2012; Ghafur 2013). This resistance to conventional antibiotic has prompted an intensive search for new therapeutic agents from diverse sources, including of animal origin (Zasloff 2002). Perumal Samy et al (2010), recently reported a saw-scaled viper venom phospholipase A2 with novel bactericidal and membrane damaging activities. SvPLA2 are demonstrated to be very attractive to be developed as microbicidal therapeutic agents because of their biochemical diversity, broad spectrum of activity against enveloped bacteria, fungi, viruses, protozoa, and parasites (Pereira 2006; Perumal Samy et al 2006; Samy et al 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call