Abstract

BackgroundDiarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Adherence of ETEC to porcine intestinal epithelial cells following infection, is necessary for its pathogenesis. While antimicrobials are commonly given as therapy or as feed additives for prophylaxis against microbial infections, the concern over increased levels of antimicrobial resistance necessitate the search for safe and effective alternatives in livestock feed. Attention is shifting to natural products including plants as suitable alternatives to antimicrobials.The activity of acetone crude leaf extracts of nine under-explored South African endemic plants from the Myrtaceae family with good antimicrobial activity were tested against pathogenic E. coli of porcine origin using a microplate serial dilution method. Bioautography, also with p-iodonitrotetrazolium violet as growth indicator was used to view the number of bioactive compounds in each extract. In vitro toxicity of extracts was determined against Caco-2 cells using the 3-(4,5-dimethythiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay. The antimicrobial susceptibility of E. coli isolates was tested on a panel of antimicrobials using the Kirby-Bauer agar diffusion method while the anti-adherence mechanism was evaluated using a Caco-2 cell enterocyte anti-adhesion model.ResultsThe MIC of the extracts ranged from 0.07–0.14 mg/mL with S. legatii having the best mean MIC (0.05 mg/mL). Bioautography revealed at least two active bands in each plant extract. The 50% lethal concentration (LC50) values ranged between 0.03–0.66 mg/mL. Eugenia zeyheri least cytotoxic (LC50 = 0.66 mg/ml) while E. natalitia had the highest cytotoxicity (LC50 = 0.03 mg/mL). All the bacteria were completely resistant to doxycycline and colistin sulphate and many of the plant extracts significantly reduced adhesion of E. coli to Caco-2 cells.ConclusionsThe extracts of the plants had good antibacterial activity as well as a protective role on intestinal epithelial cells against enterotoxigenic E. coli bacterial adhesion. This supports the potential use of these species in limiting infection causes by E. coli. Some of these plants or extracts may be useful as phytogenic feed additives but it has to be investigated by animal feed trials.

Highlights

  • Diarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC)

  • The aim of this study is to determine the antibacterial activity, and safety of acetone crude leaf extracts of nine under-studied plants from the Eugenia and Syzygium genera (Myrtaceae) against some resistant enterotoxigenic E. coli strains and to determine whether the extracts could interfere with growth or inhibit E. coli adherence to intestinal cells, thereby reducing E. coli infections in food animals and subsequent transmission to humans

  • The highest yield was obtained from Eugenia zeyheri (25.33%) followed by E. erythrophylla (18.50%)

Read more

Summary

Introduction

A global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Diarrhoea poses a significant limitation to the progress being made in the swine production industry globally. It causes huge economic losses, reduces growth rate and causes high treatment costs [1]. The mean direct economic cost per annum in China alone due to swine diarrhoea is approximately US$ 145 million [2] Other countries such as the USA and Netherlands, with huge swine industries experience a high percentage of piglet mortality annually due to diarrhoea [2]. Diarrhoea is identified as a major disease that limits efficient pork production in South Africa [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call