Abstract

This work aimed to evaluate the antibacterial activity and mechanism of cinnamon essential oil nanoemulsion (CON) against Pseudomonas deceptionensis CM2. The results revealed that CON could effectively inhibit the proliferation of P. deceptionensis CM2 cells in a time- and concentration-dependent manner. After 4 h of incubation with CON at the minimum inhibitory concentration (0.125 mg/mL), the relative fluorescence intensity of propidium iodide and 1-N-phenylnapthylamine (NPN) was increased by 32.0% and 351.4%, respectively. The membrane permeability of P. deceptionensis CM2 cells was significantly disrupted after CON treatment, resulting in the leakage of intracellular substances (such as proteins and electrolytes). CON also caused significant increases in the DiBAC4(3) fluorescence intensity of P. deceptionensis CM2 cells. These results demonstrate that CON induced inactivation of P. deceptionensis CM2 by destroying the integrity and function of bacterial membrane. A higher level of intracellular reactive oxygen species (ROS) was observed in CON-treated cells (p < 0.05), compared with control cells. Moreover, the addition of glutathione to the growth medium remarkably decreased the antimicrobial activity of CON against P. deceptionensis CM2, further confirming that oxidative stress played an important role in the antimicrobial activity of CON. Overall, CON may exhibit antibacterial effects by causing damage to the bacterial membranes and oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call