Abstract

Dental caries is a widespread disease mainly caused by the anaerobic oral pathogen Streptococcus mutans (S. mutans). Ag/ZnO nanocomposite is an efficient antibacterial agent because of its high antibacterial activity and low cytotoxicity. In this study, rod-like Ag/ZnO nanocomposite was synthesized through a deposition-precipitation method and characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The activity of Ag/ZnO nanocomposite against S. mutans was evaluated by determining the minimal inhibitory concentration, minimum bactericidal concentration and growth inhibition curve. The results showed that Ag/ZnO nanocomposite displayed higher activity against S. mutans compared with pure ZnO nanorods. Moreover, the antibacterial mechanism was investigated by determining the bacterial membrane potential, release of K+, intracellular reactive oxygen generation and lipid peroxidation. Disruption of membrane function and oxidation of biomacromolecules played important role in the antibacterial action of Ag/ZnO nanocomposite. This work proposes a potentially effective dental antibacterial agent against the dental caries-causing S. mutans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.