Abstract

Glycinin basic peptide (GBP) is an antibacterial ingredient that occurs naturally in the basic parts of soybean glycinin. The antibacterial actions of GBP against Escherichia coli ATCC 8739 were investigated in this study. The minimum inhibitory concentration of GBP against E. coli was 200 μg/mL. The exposure of E. coli cells to GBP induced significant cell damage and inactivated intracellular esterases (stressed and dead cells, 70.9% ± 0.04 for 200 μg/mL of GBP and 91.9% ± 0.06 for 400 μg/mL of GBP), as determined through dual staining in flow cytometry. GBP resulted in the exposure of phosphatidylserine in E. coli cells. The analyses of flow cytometry-manifested GBP treatment led to the shrinkage of the cell surface and the complication of cell granularity. The observations in transmission electron microscopy demonstrated that 400 μg/mL of GBP severely disrupted the membrane integrity, resulting in ruptures or pores in the membrane, outflows of intracellular contents, or aggregation of the cytoplasm. Release of alkaline phosphatase, lipopolysaccharide, and reducing sugar further verified that the membrane damage was due to GBP. In addition, GBP treatment changed the helicity and base staking of DNA, as determined by circular dichroism spectroscopy. These results showed that GBP had strong antibacterial activity against E. coli via membrane damage and DNA perturbation. Additionally, GBP exhibited no cytotoxicity on the viability of human embryonic kidney cells. Thus, GBP may be a promising candidate as a natural antibacterial agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call