Abstract

Driven by the limitations of the traditional antiarrhythmic pharmacology, current antiarrhythmic research is trying to identify new avenues for the development of specific and safe antiarrhythmic drugs. One of the most promising approaches in this field is the amelioration of the abnormal events in cellular Ca(2+) handling originating from the dysfunction of ryanodine receptor Ca(2+) release complex (RyR), which is an inevitable key factor in the pathology of myocardial dysfunction, remodeling and arrhythmogenesis. Accordingly, both in experimental and clinical situations, inhibition of abnormal activity of RyR, regardless of being the primary cause or a consequence during the pathogenesis appears to exert beneficial effect on disease outcome, including a marked antiarrhythmic defense. Considerable amount of our knowledge in this field originates from studies using dantrolene, a human drug with RyR stabilizing effect. Our review summarizes the cardiovascular pharmacology of dantrolene and the results of its use in experimental models of cardiac diseases, which emphasize a promising perspective for the possible antiarrhythmic application of RyR inhibition in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.