Abstract

The aim of this work was to determine the effect of vitamin C, diallyl disulfide (DADS) and dipropyl disulfide (DPDS) towards N-nitrosopiperidine (NPIP) and N-nitrosodibutylamine (NDBA)-induced apoptosis in human leukemia (HL-60) and hepatoma (HepG2) cell lines using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. None of the vitamin C (5-50 microm), DADS and DPDS (1-5 microm) concentrations selected induced a significant percentage of apoptosis. In simultaneous treatments, vitamin C, DADS and DPDS reduced the apoptosis induced by NPIP and NDBA in HL-60 and HepG2 cells (around 70% of reduction). We also investigated its scavenging activities towards reactive oxygen species (ROS) produced by NPIP and NDBA using 2',7'-dichlorodihydrofluorescein diacetate in both cell lines. ROS production induced by both N-nitrosamine was reduced to control levels by vitamin C (5-50 microm) in a dose-dependent manner. However, DADS (5 microm) increased ROS levels induced by NPIP and NDBA in HL-60 (40 and 20% increase, respectively) and HepG2 cells (18% increase), whereas DPDS was more efficient scavenger of ROS at the lowest concentration (1 microm) in both HL-60 (52 and 25% reduction, respectively) and HepG2 cells (24% reduction). The data demonstrated that the scavenging ability of vitamin C and DPDS could contribute to inhibition of the NPIP- and NDBA-induced apoptosis. However, more than one mechanism, such as inhibition of phase I and/or induction of phase II enzymes, could be implicated in the protective effect of dietary antioxidants towards NPIP- and NDBA-induced apoptosis in HL-60 and HepG2 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call