Abstract

Photodynamic treatment (PDT) can elicit a diverse range of cellular responses, including apoptotic cell death. Previously, we showed that PDT stimulates caspase-3 activation and subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal carcinoma A431 cells. Curcumin, the yellow pigment of Curcuma longa, is known to have anti-oxidant and anti-inflammatory properties. In the present study, using Rose Bengal (RB) as the photosensitizer, we investigated the effect of curcumin on PDT-induced apoptotic events in human epidermal carcinoma A431 cells. We report that curcumin prevented PDT-induced JNK activation, mitochondrial release of cytochrome c, caspase-3 activation, and cleavage of PAK2. Using the cell permeable dye DCF-DA as an indicator of reactive oxygen species (ROS) generation, we found that both curcumin and ROS scavengers (i.e., l-histidine, a-tocopherol, mannitol) abolished PDT-stimulated intracellular oxidative stress. Moreover, all these PDT-induced apoptotic changes in cells could be blocked by singlet oxygen scavengers (i.e., l-histidine, a-tocopherol), but were not affected by the hydroxyl radical scavenger mannitol. In addition, we found that SP600125, a JNK-specific inhibitor, reduced PDT-induced JNK activation as well as caspase-3 activation, indicating that JNK activity is required for PDT-induced caspase activation. Collectively, these results demonstrate that singlet oxygen triggers JNK activation, cytochrome c release, caspase activation and subsequent apoptotic biochemical changes during PDT and show that curcumin is a potent inhibitor for this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call