Abstract

BackgroundTriple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. MethodsWe analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. ResultsIn silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. ConclusionFAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.