Abstract

Protection of asiatic acid (AA) in mice brain against D-galactose (DG) induced aging was examined. AA at 5, 10 or 20 mg kg(-1) per day was supplied to DG treated mice for 8 weeks. AA intake at 10 or 20 mg kg(-1) per day increased its deposit in brain. DG treatment increased Bax, cleaved caspase-3 protein expression and decreased Bcl-2 expression. AA intake at 10 and 20 mg kg(-1) per day declined Bax, cleaved caspase-3 expression, and retained Bcl-2 expression. DG treatment decreased brain glutathione content and glutathione peroxidase activity; increased brain reactive oxygen species and protein carbonyl levels, and enhanced NAPDH oxidase expression. AA intake at test doses reversed these changes. DG treatment up-regulated the expression of advanced glycation end product (AGE), carboxymethyllysine, receptor of AGE (RAGE), mitogen-activated protein kinases and CD11b as well as increasing the interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha release in the brain. AA intake at 5, 10 and 20 mg kg(-1) per day lowered AGE and carboxymethyllysine expression, and at 10 and 20 mg kg(-1) per day reduced RAGE production. AA intake dose-dependently suppressed p-p38 expression and lowered IL-6 and TNF-alpha levels, and at 10 and 20 mg kg(-1) per day down-regulated p-JNK and CD11b expression. DG treatment declined brain-derived neurotropic factor (BDNF) expression and raised glial fibrillary acidic protein (GFAP) expression. AA intake at 20 mg kg(-1) per day retained BDNF expression and at 10 and 20 mg kg(-1) per day reduced GFAP expression. These findings indicated that the supplement of asiatic acid might be beneficial to the prevention or alleviation of brain aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call