Abstract

Suppressing vascular endothelial growth factor (VEGF), its receptor (VEGFR2), and the VEGF/VEGFR2 signaling cascade system to inhibit angiogenesis has emerged as a possible cancer therapeutic target. The present work was designed to discover and evaluate bioactive phytochemicals from the Clerodendrum inerme (L.) Gaertn plant for their anti-angiogenic potential. Molecular docking of twenty-one phytochemicals against the VEGFR-2 (PDB ID: 3VHE) protein was performed, followed by ADMET profiling and molecular docking simulations. These investigations unveiled two hit compounds, cirsimaritin (- 12.29kcal/mol) and salvigenin (- 12.14kcal/mol), with the highest binding energy values when compared to the reference drug, Sorafenib (- 15.14kcal/mol). Furthermore, only nine phytochemicals (cirsimaritin and salvigenin included) obeyed Lipinski's rule of five and passed ADMET filters. Molecular dynamics simulations run over 100ns revealed that the protein-ligand complexes remained stable with minimal backbone fluctuations. The binding free energy values of cirsimaritin (- 52.35kcal/mol) and salvigenin (- 55.89kcal/mol), deciphered by MM-GBSA analyses, further corroborated the docking interactions. The HOMO-LUMO band energy gap (ΔE) was calculated using density-functional theory (DFT) and substantiated using density of state (DOS) spectra. The chemical reactivity analyses revealed that salvigenin exhibited the highest chemical softness value (6.384eV), the lowest hardness value (0.07831eV), and the lowest ΔE value (0.1566eV), which implies salvigenin was less stable and chemically more reactive than cirsimaritin and sorafenib. These findings provide further evidence that cirsimaritin and salvigenin have the ability to prevent angiogenesis and the development of cancer. Nevertheless, more in vitro and in vivo confirmation is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.